Loss of matrix metalloproteinase-9 or matrix metalloproteinase-12 protects apolipoprotein E-deficient mice against atherosclerotic media destruction but differentially affects plaque growth.

نویسندگان

  • Aernout Luttun
  • Esther Lutgens
  • Ann Manderveld
  • Katleen Maris
  • Désiré Collen
  • Peter Carmeliet
  • Lieve Moons
چکیده

BACKGROUND Epidemiological and histological evidence implicates proteinases of the matrix metalloproteinase (MMP) family in atherosclerosis and aneurysm formation. We previously indicated a role for urokinase-type plasminogen activator in atherosclerotic media destruction by proteolytic activation of MMPs. However, the role of specific MMPs, such as MMP-9 and MMP-12, in atherosclerosis remains undefined. METHODS AND RESULTS MMP-9- or MMP-12-deficient mice were crossed in the atherosclerosis-prone apolipoprotein E-deficient background and fed a cholesterol-rich diet. Mice were killed at 15 or 25 weeks of diet to study intermediate and advanced lesions, respectively. Loss of MMP-9 reduced atherosclerotic burden throughout the aorta and impaired macrophage infiltration and collagen deposition, while MMP-12 deficiency did not affect lesion growth. MMP-9 or MMP-12 deficiency conferred significant protection against transmedial elastin degradation and ectasia in the atherosclerotic media. CONCLUSIONS This study is the first to provide direct genetic evidence for a significant involvement of MMP-9, but not of MMP-12, in atherosclerotic plaque growth. In addition, deficiency of MMP-9 or MMP-12 protected apolipoprotein E-deficient mice against atherosclerotic media destruction and ectasia, mechanisms that implicate the involvement of these MMPs in aneurysm formation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix metalloproteinase-9 modulation by resident arterial cells is responsible for injury-induced accelerated atherosclerotic plaque development in apolipoprotein E-deficient mice.

OBJECTIVE Although matrix metalloproteinase-9 (MMP-9) has been implicated in atherosclerotic plaque instability, the exact role it plays in the plaque development and progression remains largely unknown. We generated apolipoprotein E (apoE)-deficient (apoE-/-) MMP-9-deficient (MMP-9-/-) mice to determine the mechanisms and the main cell source of MMP-9 responsible for the plaque composition dur...

متن کامل

Deletion of Periostin Protects Against Atherosclerosis in Mice by Altering Inflammation and Extracellular Matrix Remodeling.

OBJECTIVE Periostin is a secreted protein that can alter extracellular matrix remodeling in response to tissue injury. However, the functional role of periostin in the development of atherosclerotic plaques has yet to be described despite its observed induction in diseased vessels and presence in the serum. APPROACH AND RESULTS Hyperlipidemic, apolipoprotein E-null mice (ApoE(-/) (-)) were cr...

متن کامل

Melagatran reduces advanced atherosclerotic lesion size and may promote plaque stability in apolipoprotein E-deficient mice.

OBJECTIVE Inflammatory mechanisms are involved in atherosclerotic plaque rupture and subsequent thrombin formation. Thrombin not only plays a central role in thrombus formation and platelet activation, but also in the induction of inflammatory processes. We assessed the hypothesis that melagatran, a direct thrombin inhibitor, attenuates plaque progression and promotes stability of advanced athe...

متن کامل

Lesional overexpression of matrix metalloproteinase-9 promotes intraplaque hemorrhage in advanced lesions but not at earlier stages of atherogenesis.

BACKGROUND Matrix metalloproteinase-9 (MMP-9) is involved in atherosclerosis and elevated MMP-9 activity has been found in unstable plaques, suggesting a crucial role in plaque rupture. This study aims to assess the effect of MMP-9 on plaque stability in apolipoprotein E-deficient mice at different stages of plaque progression. METHODS AND RESULTS Atherosclerotic lesions were elicited in caro...

متن کامل

Resveratrol protects against diet-induced atherosclerosis by reducing low-density lipoprotein cholesterol and inhibiting inflammation in apolipoprotein E-deficient mice

Objective(s):Resveratrol (RES) is a polyphenol compound that has been shown a promising cardioprotective effect. However, some reports have yielded conflicting findings. Herein, we investigated the anti-atherosclerotic effects of RES in apolipoprotein E (apo E)-deficient mice on a high cholesterol diet. Materials and Methods: Firstly, atherosclerosis was induced by feeding a high cholesterol di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation

دوره 109 11  شماره 

صفحات  -

تاریخ انتشار 2004